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Abstract 

The goodness of fit tests is an analytical procedure for testing the assumptions underlying the 

model which we are trying to fit to the data. These tests illustrate how well the distribution we selected 

fits to our data. The gamma distribution is widely used in the areas of engineering, economics, sciences, 

industry, business etc. It is quite important to study the assumption of gamma distribution as it has gained 

wide applicability in various fields. Various goodness of fit tests are available for testing the assumption 

of gamma distribution. Most commonly used tests are the tests based on EDF (Empirical Distribution 

Function) tests, such as , Anderson-Darling, Kolmogorov-Smirnov, Cramer-von Mises test. The aim of 

this article is to study the performance of some goodness of fit tests for gamma distribution by 

considering three different sample sizes against three different alternative hypotheses. Different tables are 

made which display the results obtained by Monte Carlo Simulation technique. Finally, conclusions are 

made.  

Keywords: Anderson-Darling test, Goodness of Fit, Kolmogorov-Smirnov test, Monte-Carlo simulation, 

power, Watson test. 

1. INTRODUCTION 

  The goodness of fit test is used to identify the appropriate distribution to be fitted for a 

given data. It describes how well it fits a set of observations. The best way to verify the compatibility of a 

set of observed sample values with a normal or any other distribution by the help of goodness of fit tests. 

It summarizes the discrepancy between the observed and expected values under a statistical model. The 

goodness of fit statistics are goodness of fit indices with known sampling distributions that are used in 

statistical hypothesis testing. It shows how well the distribution we selected fits to our data. These tests 
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can be used to test whether the fitted model may have generated the observed data. In order to evaluate 

the performance of a goodness of fit test, it is necessary to study the power of the proposed method 

against some specific alternatives.  

  Goodness of fit testing may be regarded as a diagnostic procedure in order to test the 

assumptions underlying the model that one may try to fit to the data. The goodness of fit test has gained 

wide applicability in recent times in various fields like in finance, in decision making science, and in 

many other fields.  

 As an important part of data analysis, it is quite essential to study the goodness of fit technique 

which ensures that the data come from a particular family of distribution. Various goodness of fit tests 

have been found available to solve the problem of goodness of fit, out of which the most commonly used 

goodness of fit test is the Chi-Square test of goodness of fit which is mostly used to estimate the fit 

quality of binned data. But, it should not be considered as the ultimate solution for every goodness of fit 

problem as it is neither capable nor expected to detect fit inefficiencies for all possible problems. The K-S 

test proposed by Kolmogorov and Smirnov (1933), test given by Anderson- Darling (1952, 1954), 

Watson test (1961) etc. are another most commonly used goodness of fit tests which overcome the 

drawbacks of Chi-square test and hence can be applied in different situations which provide better results 

as compared to the Chi-Square test. While conducting a goodness of fit test, the researcher often wants to 

retain the null hypothesis. In other words, they want to demonstrate that a sample follows a specific 

probability distribution (e.g., a normal or gamma distribution). In employing the inferential tests, the 

researchers want to reject the null hypothesis, i.e., they want to exhibit that one or more samples do not 

come from the same population. It should be noted that, if the null hypothesis is rejected, the alternative 

hypothesis for a goodness of fit test does not specify an alternative distribution that would become the 

most likely distribution for the data. There are several tests of goodness of fit available in literature which 

can be applied in different situations proposed by various authors have been highlighted below: 

- Test developed by Shapiro and Wilk (1965) for testing a complete sample for normality. 

- Test given by Dahiya and Gurland (1972) based on generalized minimum chi-square for the 

Gamma and Exponential distributions. 

- Locke (1976) developed a rank test for testing two parameter Gamma distribution against general 

alternatives. 
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- A test for exponentiality based on the Gini’s index introduced by Gail and Gastwirth (1978).  

- A test based on the empirical distribution of the correlation coefficient of the points on a 

probability plot with points found by using moment type estimates of the parameters proposed by 

Vogel and McMartin (1991). 

- A modified Greenwood statistic for testing the gamma hypothesis proposed by Shapiro and Chen 

(2001). 

- Wilding and Mudholkar (2008) considered a test for gamma hypothesis based on characteristic 

independence between the mean and coefficient of variation. 

- Noughabi, Arghami and Borzadaran (2014) proposed a general goodness of fit test based on the 

estimated Gini index. 

- Goodness of fit tests based on a new characterization of Pareto distribution proposed by 

Obradovic, Jovanovic and Milosevic (2015).  

 The gamma distribution which is also known as Type III Pearson’s system of distribution 

has been widely used to model non-negative measurements that reveal unimodality and right skewness 

and can be applied in the areas of engineering, sciences, industry, economics and business. Earlier, its 

applications were mainly involved as a derived distribution and its relationship to the chi-squared 

distribution, but in recent times, it has gained its importance as a population model. Different authors 

gave its applications in different fields. Some of which were given by McDonald and Jensen (1979), 

Bougeault (1982), McCullagh and Lang (1984), Matis et al. (1992), Reiser and Rocke (1993), Yang 

(1994), Tan (1995), Yeh (1997) which comprise of geological studies, ecology, inventory control and 

queuing problems, economic studies, meteorology, reliability assessments, computer evaluations and 

biological studies. Besides these, it can be recommended as the failure time model in the field of 

econometrics. It is also used to model the size of insurance claims, rainfall and the errors in multi-level 

Poisson regression models. As a result, it is quite essential to assess the validity of the assumption of 

gamma distribution before applying it in any field using appropriate goodness of fit tests.   

 In this paper, some well established goodness of fit tests have been considered to study the 

validity of gamma hypothesis by the use of simulation technique. The description of each of the selected 

tests for gamma distribution, the effects on the power of the tests due to the sample sizes and the type of 

alternative distributions are also included and are given in different sections below.  
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2. GOODNESS OF FIT TESTS FOR GAMMA DISTRIBUTION: 

Because of extensive use of the gamma models in the areas of econometrics, engineering, 

biomedical sciences and various other fields, the importance of goodness of fit for gamma distribution has 

also increased. But, only a few goodness of fit tests are available in literature that are used to test if the 

data indeed come from a gamma population. Many of the existing approaches for testing the gamma 

hypothesis usually involve the adaption of empirical distribution function tests of uniformity, using the 

probability integral transformation. The tests of uniformity that are used in this approach include the work 

of Kolmogorov (1933) and the members of Cramer-von Mises family such as the tests given by 

Anderson-Darling (1954). In this article, we have considered three such tests of goodness of fit which are 

defined below:  

3. TEST PROCEDURES: 

 Let be independent and identically distributed random variables having the gamma 

density 

 

where α and β are respectively the scale parameter and the shape parameter. In this study, we have 

considered three empirical distribution function test statistics and the test procedures are given below: 

3.1 Tests based on Empirical Distribution Function (EDF): 

3.1.1 Anderson-Darling test: 

The Anderson-Darling test for Gamma distribution (Stephens, 1986), based on the statistic 

                                           (3.1) 

where (i=1,2,…,n) with F denoting the c.d.f. of Gamma distribution. For testing the 

gamma hypothesis, the value of A
2
 is compared with the empirical critical values. In case the value of A

2 

exceeds the critical value at corresponding significance levels, the gamma hypothesis may be rejected.
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3.1.2 Kolmogorov-Smirnov test: 

 The Kolmogorov- Smirnov statistic denoted by D, introduced by Kolmogorov (1933) is given by the 

formula  

             
                                                        (3.2) 

where                                                                      (3.3) 

                                                                (3.4) 

and  have the same meaning defined in section 3.1.1 above. The value of D is compared with its 

critical values for taking the decision about the null hypothesis. The null hypothesis is rejected when the 

value of D goes beyond the simulated critical value, at corresponding significance levels. 

 

3.1.3 Watson test: 

 The Watson test for gamma distribution (1961) is given by the statistic 

                                             (3.5) 

                                             
                               (3.6) 

where, W
2
 is the Cramer-von Mises statistic defined in (3.6) and  is the mean of  defined in 

section 3.1.1 above. If the value of U
2
 exceeds the empirical critical value of the test statistic, then the 

gamma hypothesis is rejected at corresponding significance levels. 

 

4. TYPES OF ALTERNATIVES: 

In this article, we have considered three different statistical distributions, viz., Weibull, 

Lognormal and Rayleigh distribution, whose density functions are defined below: 
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4.1 Weibull Alternative: 

The p.d.f. of Weibull distribution is given by 

   

4.2 Lognormal Alternative: 

The p.d.f. of Lognormal distribution is given by 

  

 

4.3 Rayleigh Distribution: 

The p.d.f. of Rayleigh distribution is given by 

          

 
 

  

5.  SIMULATION STUDY: 
 

 In this article, Monte- Carlo simulation technique has been adopted in order to estimate the power 

of the selected tests for gamma distribution. For three different sample sizes (n=10, 25, 50) by considering 

α=0.05 level of significance against the selected alternative distributions mentioned in Section 4 above, 

the effects on the power of the tests due to the sample size and the type of the alternative distributions are 

also shown in different tables with the help of simulation method. Here, the Uniform (0,1) variates are 

generated by RND function using QBASIC and for the other distributions, method of inverse integral 

transformation of uniform variates is used. Normal deviates are generated by using Box-Muller (1958) 

formula which is used to generate lognormal variates. For each result 10,000 repetitions are made. The 

ratio of the value of the test statistic greater than the critical value divided by the total number of 

repetition gives the empirical level under null case and power of the test statistics under the alternative 

hypothesis. 
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6. RESULTS AND DISCUSSIONS: 

Table 1: Empirical Power of the Tests under Weibull Alternative (α=0.05) 

Sample Size(n)  

(η,σ) 

Test Statistics 

AD ( )             KS(D)            Watson ( ) 

 

 

10 

(1,1) .6175 .2665 .3903 

(2,1) .0645 .0550 .0588 

(3,2) .9835 .9591 .8363 

(4,2) .9976 .9949 .9637 

 

 

25 

(1,1) .8963 .5494 .7768 

(2,1) .1117 .0813 .0675 

(3,2) 1.000 .9999 .9973 

(4,2) 1.000 1.000 1.000 

 

 

50 

(1,1) .9935 .8377 .9766 

(2,1) .1861 .1159 .0859 

(3,2) 1.000 1.000 1.000 

(4,2) 1.000 1.000 1.000 

 

Table 2: Empirical Power of the Tests under Lognormal Alternative (α=0.05) 

Sample Size(n) (µ, σ) Test Statistics 

AD ( )                        KS(D)                     Watson ( ) 

 

 

10 

(0, .2) .1569 .3854   .9669   

(0, .4) .0596 .0959   .1949   

(0, .5) .0892 .0826   .0830   

(0, .7) .2252 .1083   .0842   

(0, .9) .4320 .1660   .2213   

(0, 1) .5442 .2000 .3118   

 

 

25 

(0, .2) .9997 .9952   1.000    

(0, .4) .2676 .2986   .4819   

(0, .5) .2004 .1631   .1273   

(0, .7) .3727 .1784   .1157   

2A 2U

2A 2U
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(0, .9) .7025 .3206   .4609   

(0, 1) .8346 .4109   .6433   

 

 

50 

(0, .2) 1.000    1.000   1.000    

(0, .4) .7690    .6743   .9209    

(0, .5) .4424    .3255   .2326    

(0, .7) .5995 .2929   .2038    

(0, .9) .9265 .5666   .7804    

(0, 1) .9830 .7015   .9267    

Table 3: Empirical Power of the Tests under Rayleigh Alternative (α=0.05) 

Sample 

Size(n) 

 

σ
2 

Test Statistics 

  AD ( )             KS(D)             Watson ( ) 

 

 

10 

 

0.2 .8375 .6402 .4822 

0.5 .0645 .0550 .0588 

0.6 .0426 .0477 .0568 

0.8 .1181 .1181 .0940 

1.0 .2880 .2462 .1639 

 

 

25 

0.2 .9993 .9798 .9262 

0.5 .1116 .0813 .0675 

0.6 .0500 .0494 .0639 

0.8 .2309 .2237 .1627 

1.0 .5711 .5007 .3415 

 

 

50 

0.2 1.000 1.000 .9998 

0.5 .1861 .1159 .0859 

0.6 .0542 .0467 .0795 

0.8 .3960 .4785 .2938 

1.0 .8504 .7804 .6385 

 

 

2A 2U
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Figure 1: Empirical Power of the Tests under Weibull Alternative (n=25, α=0.05) 

 

 

 

 

Figure 2: Empirical Power of the Tests under Lognormal Alternative (n=25, α=0.05) 
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Figure 3: Empirical Power of the Tests under Rayleigh Alternative (n=25, α=0.05) 

  

 

 Table 1 depicts the empirical power of the selected tests under Weibull alternative for four 

different set of the parameters. It is being observed for this alternative that the power of all the tests 

increases with the increase in the sample sizes. Also, for the parameter set (2,1), the empirical power of 

all the tests become very low as compared to the other parameter sets viz.,  (1,1), (3,2) and (4,2) as this set 

of parameter give the shape of Weibull distribution like the gamma distribution. However, out of these 

three tests, the power of AD (A
2
) test is seem to be more powerful than the power of the other two tests in 

all the situations. The power of Watson (U
2
) and K-S (D) tests are found to be lower than AD (A

2
) test for 

small values of the parameters and finally, for large values of the parameters as well as for large sample 

sizes, the power of these two tests also come closer to the AD (A
2
) test.  

 Table 2 represents the empirical power of the three tests under the alternative of Lognormal 

distribution for six different sets of the parameters. Though, the power of all the tests increases with the 

increase in the sample sizes yet, an ups and down has been found for the empirical power of the tests with 

respect to the parameter values. For instance, the empirical power of the three tests for the parameter sets 
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0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4P
ro

p
o

rt
io

n
 o

f 
re

je
c

ti
o

n
 

Parameter values 

Empirical Power of  the Tests under 
Rayleigh Alternative 

AD K-S Watson



 
                    ASR Vol. 35 (2), Dibrugarh University   September, 2023 

78 
 

again it increases for the parameter sets (0,0.9) and (0,1). For this alternative, it is being observed that, for 

small values of the parameters, the Watson (U
2
) test seems to be more powerful than the other tests. But 

as the sample size as well as the values of the parameter increases, the AD (A
2
) test gives comparatively 

higher power.   

 Table 3 shows the empirical power of the three tests under Rayleigh alternative five different 

values of the parameter. It is being observed for this alternative that the power of all the tests increases 

with the increase in the sample sizes.  Here also, an ups and down for the empirical power of all the three 

tests have been found for this alternative with respect to the parameter values.  For instance, the power of 

the selected tests gradually decreases and becomes very low for the parameter values σ
2
=0.5 and σ

2
=0.6 

than the power found for the parameter value σ
2
=0.2. Again, the power of the tests increases for the 

parameter values σ
2
=0.8 and σ

2
=1.0 as compared to the above mentioned parameter values.  However, the 

empirical power of AD (A
2
) test is found to be higher than the power of the other tests followed by K-S 

(D) test, whereas the overall power of Watson test is found to be lower as compared to the others.  

7. CONCLUSION:  

 From the above discussions, it may be concluded that the AD (A
2
) test is more preferable as 

compared to the other two tests as it has shown greater power in all the situations. The power of K-S (D) 

test is also found to be reasonably good, whereas, the Watson test displays comparatively lower power for 

Rayleigh alternative in all the situations considered here. Finally, we arrive at the conclusion that the 

Anderson-Darling (A
2
) test may be recommended for testing the goodness of fit for gamma distribution 

against the alternatives that have been considered for the study. In the absence of this test, we may prefer 

the K-S (D) test.  
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