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Abstract

We aim to assemble the real-life examples and simulations studies spread over the literature where
various ranked set sampling (RSS) methods are applied in bivariate setup. Further, we consider a bivariate
Reid Vapor Pressure (RVP) data with the aim to estimate mean RVP of gasoline additive. We consider
Morgenstern type bivariate logistic (MTBL) distribution to be a suitable fit to the bivariate data, review
the RSS estimators under various RSS schemes, generate the samples under these schemes and estimate
the mean RVP along with their variances. Our study confirms the theoretical results for MTBL
distribution that extreme ranked set sampling (ERSS) scheme is the best to estimate both the mean and

variance parameters.

Key words: Ranked set sampling, Concomitants of order statistics, Best linear unbiased estimator,

Morgenstern type bivariate logistic distribution.
1. INTRODUCTION

There are number of practical situations where sampling unit is associated with several variables and
the main variable of interest is difficult or expensive or time consuming to measure while some other
correlated variable is easy or economically cheap to measure. For dealing with such situations, Mclntyre
(1952) introduced RSS scheme as a cost-effective alternative to simple random sampling (SRS) and

applied to estimate the mean pasture yield. In this sampling scheme the sampling units are ranked by
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judgment method, without making the actual measurements for each of the selected n samples of n units.
Now from each of the i ranked set, i*” unit is selected, and the measurement is made forthis i*”
judgement ranked unit with respect to characteristic of interest, i = 1,2, ..., n. This results in a ranked set
sample of size n by MclIntyre’s method. Such a selected sample of n units is called one-cycle RSS of size
n. If this complete procedure is repeated m times (m cycles), the RSS of size nm is generated and such a

sample is called m-cycle RSS of size nm.

Judgement method of ranking is not suitable when there is ambiguity in discriminating the rank of
one unit with another. Further the impact of ranking errors is also seen on the precision of estimator based
on ranked set sample. The imperfect ranking of the units in RSS leads to larger mean square errors of RSS
estimators. Stokes (1977) suggested using an auxiliary variable, correlated with the study variable, to rank
the sampling units. Thus, Stokes considered a situation where the variable of interest, say Y, is difficult or
expensive or time consuming to measure, but an auxiliary variable X correlated with Y is easily
measurable and can be ordered exactly. Now each of the n sets of n samples are ranked with respect to
the auxiliary variable and from each of the i* ordered set, i*” ranked unit is selected for measurement
with respect to the variable of interest Y for i = 1,2, ..., n. This gives ranked set sample based on Stokes’s
method. In the subsequent period, variations in choosing ranked unit for Y-measurement led to different
versions of RSS schemes such as Median RSS (MRSS), Lower and Upper RSS (LRSS and URSS),
ERSS, Moving Extreme RSS (MERSS), maximum ranked set sampling with unequal sample sizes
(MRSSU), etc. The aim of proposing the variety of RSS schemes was to obtain an improved estimator of
parameter of interest than the usual SRS method keeping the constraint of cost of sampling in mind. For
more detail see Samawi et al. (1996), Al-Omari and Bouza (2014), Biradar and Santosha (2014), Koshti
(2021), Koshti and Kamalja (2017, 2021a, 2023), Kamalja and Koshti (2019) etc.

One can observe that McIntyre’s RSS scheme requires univariate distributional setup for parameter
estimation while due to role of auxiliary variable X correlated with variable of interest Y, Stokes’s scheme
requires bivariate distributional setup. Further in Mclntyre’s method, distribution of order statistics is
required while in Stokes’s method theory of concomitants of order statistics (COS) is needed. While
implementing the RSS schemes to the given situation, the associated univariate or bivariate distribution,

the family to which the distribution belongs, parameters of the distribution, order statistics and
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concomitants of order statistics etc. increase the scope of studies of RSS estimation. A vast literature is

developed in connection with the univariate and bivariate setup giving more and more depth to this area.

This paper aims to overview a variety of real-life situations and datasets where RSS schemes are
used for parameter estimation, specifically in bivariate setup. In general RSS applications in bivariate
setup consider a situation where variable under study is difficult or costly or time consuming to measure
but correlated with auxiliary variable. We summarize the variety of bivariate data sets dealt by the
researchers along with the nature of auxiliary and study variable, the bivariate distribution which is
assumed for it and RSS schemes used for estimation purpose. This brings the applications of RSS
schemes in bivariate setup in one-sight summary form. Apart from this we also summarize about the

simulation studies performed in the same lines.

Further we work on an interesting application of RSS in estimation for one real-life bivariate data.
The main idea is to fit a suitable distribution to significantly correlated auxiliary and study variable
marginally and then assume the suitable bivariate version of the marginals to (X,Y). Instead of just
assuming the bivariate distribution to the data, this seems to be more appropriate to proceed with the

application of RSS schemes for parameter estimation. The paper is organized as follows.

In section 2 we review the variety of the real-life bivariate data sets where RSS schemes are used for
estimation and summarize in compact form. Section 3 describes the bivariate RVP data and searches for a
suitable marginal distribution to each variate of the data. In section 4 we briefly review a literature on
COS and estimators under RSS schemes for the bivariate distribution which fits to the RVP data. Finally,
we present the numerical estimation of parameters under RSS schemes for RVP data in section 5. The

concluding remarks are given in section 6.

2. APPLICATIONS OF RSS TO REAL-LIFE BIVARIATE DATA SETS

It is seen that among the variety of RSS schemes, a specific scheme performs better than the other
ones for the given bivariate distribution. For different bivariate distributions, different RSS estimators are
recommended by researchers. To achieve this, usually the researcher considers the efficiency of estimator
under one RSS scheme over the other and proves that it crosses unit value unconditionally or under some

condition. Numerical evaluations and trends in efficiencies across the parameter values and sample sizes
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are used when efficiency is complex function of parameters. As the simulated data best represents the
parent distribution, simulation studies are also commonly used to establish the superiority of one scheme
over the other. In this case the data is simulated from the bivariate distribution under consideration and
parameters are estimated under the respective schemes along with their variances and efficiencies. Some
recent statistical software facilitates the simulation for specific bivariate distributions. But simulation
from bivariate distributions belonging to recently introduced families need special simulation algorithms.
Table 1 summarizes some of the simulation studies done for recommending specific RSS scheme for
different bivariate distributions like bivariate normal, bivariate Lomax, Morgenstern type bivariate
(MTBR), type (MTBU/CTBU),
Morgenstern/Cambanis type bivariate exponential (MTBE/CTBE) distributions.

Rayleigh Morgenstern/Cambanis bivariate =~ Uniform

Table 1 A summary of simulation studies for RSS estimation in bivariate setup

Reference Distribution RSS schemes
under consideration Used
Philip et al. (2002) . L RSS
Al-Saleh and Al-Ananbeh (2007) | b variate Normal distribution MERSS
. . . MTBU, .
AlKadiri and Migdadi (2019) MTBE Bivariate RSS
Chacko (2017) MTBE RSS, URSS
. . RSS, ERSS,
Koshti and Kamalja (2021 a) CTBU LRSS, URSS
Koshti and Kamalja . e RSS, LRSS,
(2021 b) Bivariate Lomax distribution MRSS
Basikhasteh et al. (2021) MTB Rayleigh distribution | RSS, URSS, MRSSU
Kamalja and Koshti RSS, LRSS,
(2022) CTBE ERSS

The proposed RSS scheme can be justified as the best when variance of estimator based on this
scheme is least among all other RSS schemes. It also becomes necessary for the researcher to present at
least one real-life situation where the developed results are useful. Hence usually the research studies
present the applicability of developed results through real-life examples. The variety of RSS schemes
have been used in many real-life situations by researchers. Here, we briefly describe about some of the

real situations and bivariate data sets found in literature for estimation under RSS schemes.

84



ASR Vol. 35 (2), Dibrugarh University September, 2023

Philip et al. (2002) estimated mean RVP of the new reformulated gasoline in United States (US)
based on RSS scheme with set size three and number of cycles five using two variables as: field
measurement (X) and lab measurement (Y) of RVP of the gasoline. Before this, Nussbaum and Sinha
(1997) also used RSS scheme for estimation of mean RVP of the gasoline for the same situation without
using any specific bivariate distribution. They considered a ranked set sample of only 12 gasoline samples
to send for full laboratory RVP measurement (with set size three and four cycles). That one sample from
each of the three sets of the three field measurements is sent for laboratory measurement and this is

repeated for four times.

Al-Saleh and Al-Hadrami (2003) and Al-Saleh and Al-Ananbeh (2007) used the data of heights and
diameters of 1103 trees (obtained from Prodan (1968)) and remove smallest 20 observations to achieve
normality. They proved that MERSS is more efficient than usual SRS in estimating the population mean,

and the MERSS sample carries more information about the parameter than a SRS of equivalent size.

Chacko and Thomas (2007) estimated the actual average parental income of students from various
departments of University of Kerala based on RSS and LRSS scheme under the assumption that (X,Y)
follows bivariate Pareto distribution. Here X is parental annual income reported on admission record
whereas Y is actual parental annual income which is obtained by asking questions to students on the
various components of parental income. This situation is also studied by Thomas and Philip (2018).
Koshti and Kamalja (2021b) estimated average annual parental income assuming (X,Y) follow bivariate

Lomax distribution.

Chacko and Thomas (2009) used the bivariate data relating to Confir (Pinus Palustrine) trees where
X is diameter (in cm) of the Confir tree at breast height and Y is height (in ft) of the tree. They assumed
that (X,Y) follows Morgenstern type bivariate Logistic (MTBL) distribution to estimate the parameters

associated with Y based on RSS scheme.

Tahmasebi and Jafari (2012) considered a bivariate data on 256 purslane plants (portulaca oleracea).
The mean shoot diameter (V) is estimated using RSS, ERSS and MERSS schemes using shoot height as
auxiliary variable (X) and assuming (X,Y)to have MTBU distribution. Koshti and Kamalja (2021 a)
assumed CTBU distribution to the same bivariate data and estimated mean shoot diameter using RSS,

ERSS, LRSS and URSS schemes.
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A bivariate data from marine biological research in the Persian Gulf relating to hawksbill turtle
(eretmochelys imbricata) eggs is used by Tahmasebi and Jafari (2015). In this application X is weight (in
gm) of eggs and Y is diameter (in mm) of the hawksbill turtle eggs. They assumed that (X,Y) follows
MTB Gamma distribution to estimate parameter associated with Y using RSS, ERSS and MERSS

schemes.

The study in reappraisal of caloric requirements in healthy women by Owen et al. (1986) shown that
the body weight of women (X) was highly related to the Resting Metabolic Rate (RMR) (Y) of the
women. Here X can be measured very easily whereas Y was difficult to measure. This situation is
considered by Tahmasebi et al. (2017) to estimate parameter associated with Y -variate using RSS
schemes under the assumption that (X,Y) follows MTB Rayleigh distribution. For this data Basikhasteh
et al. (2021) obtained Bayes estimators based on bivariate RSS, ERSS and maximum ranked set sampling

with unequal sample size.

Lange et al. (1993) studied the influence of water chemistry on mercury concentration in largemouth
bass from 53 different Florida lakes. The data consist of amount of alkalinity (mg/l), calcium (mg/1),
chlorophyll (mg/1) etc. in each of the water samples. The sample of fishes was taken from each lake to
measure the minimum mercury concentration (ug/g) . Lange et al. (1993) observed that the
bioaccumulation of mercury in the largemouth bass was strongly influenced by the chemical
characteristics of the lakes. Accordingly, the amount of alkalinity in water sample (X) and the minimum
mercury concentration in the sampled fish (Y) forms the bivariate data. This data is also used by Mohsin
et al. (2014) and Chacko (2017). Mohsin et al. (2014) fitted a bivariate exponential distribution to the data
while Chacko (2017) assumed (X, Y) to have MTBE distribution and used RSS and ERSS schemes for
estimation of minimum mercury concentration. Kamalja and Koshti (2022) estimated the mean minimum
mercury concentration in largemouth bass from different Florida lakes using RSS, LRSS and ERSS

schemes assuming (X, Y)~CTBE distribution.

Koshti and Kamalja (2021 b) considered the gross income (in US$) in 2005 (X) and 2010 (Y) of 77
Professors, Associate Professors and Assistant Professors who worked at University of California (UC)
for more than 5 years in the Department of Statistics. Shih et al. (2019) fitted the bivariate Pareto
distribution to this data using the Frank copula and Sankaran and Nair bivariate Pareto (SNBP)

distributions by using maximum likelihood estimation. Koshti and Kamalja (2021 b) estimated mean
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gross income for the professors at UC system under RSS, LRSS and MRSS schemes assuming bivariate

Lomax distribution to (X,Y).

The above review shows that the researchers considered both parametric and nonparametric methods
for the estimation under RSS schemes for bivariate data. The parameter estimation associated with
bivariate distributions under various RSS schemes has further been used to estimate other population
quantities like mean, variance etc. In the following Table 2 we present a summary of bivariate real-life
data sets discussed above along with the assumed bivariate distribution and RSS schemes used for

parameter estimation.

Table 2 A summary of real-life bivariate data sets where RSS estimation is used

Details about Distribution Variant of
Reference Details of data of variables under RSS
set Study variable Auxiliary . . schemes
. consideration
variable used
Environmental Bivariate
Philip et al. Protection Normal RSS
(2002) Agency (EPA) RVP RVP A
data (Size:15) measurement at | measurement distribution
Chen et al. RVP data laboratory at field ) RSS,
(2003) (Size: 90) URSS
Al-Saleh and
Al-Hadrami Tree data Bivariate
2003 i Vv
Al (S 0 h) q by Prodan (1968) Dlami‘;zreof the Height of tree Normal XLA]EIE;SSGS
) Zle an (Size: 1083) distribution
Ananbeh(2007)
Chacko and Bivariate
Thomas (2007), R q Parcto
Thomas and i eporte S
Philip (2018) Poafr;réasl tilndceor?[]se Actual parental | parental annual distribution RSS,
Koshti and (Size: 64y | 2mnualincome | income in Bivariate LRSS
. records
Kamalja Lomax
(2021 b) distribution
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Details about Distribution Variant of

Reference Details of data of variables under RSS

set Study variable Auxiliary . . schemes
. consideration
variable used
Chacko and . .
Conlfir (Pinus . Diameter of
Thgrillllagsh(igé)%’ Palustrine) tree Helgg;(e)f the the tree at MTB Logistic RSS
Mehta (2013) (Size: 396) breast height
. RSS,
Tahmasebiand | = MTB Uniform | ERSS,
Jafari (2012) Biological study MERSS
on purslane . .

Koshti and plants Shoot diameter | Shoot height Ff{RSsSS,
Kamalja (Size: 256) CTB Uniform LRSS’
(2021 a) URSS’

. Marinf: biolggical Diameter of the . RSS
Tahmgsebl and science in hawksbill turtle Weight of the MTB Gamma ERSS,
Jafari (2015) Persian Gulf oS eggs MERSS
(Size: 300) &8
Tahmasebi et al. RSS, ERSS,
(2017) . MERSS
Health data on Resting .
. Body weight of . RSS, URSS,
Basikhasteh et al. (3?205122) Me;;lz:ii;;ate women MTB Rayleigh MRSSU
(2021) ' (Bayes
estimators)
RSS,
Chacko (2017) Mercu¥y . Minimum Amount of MTB . ERSS,
concentration in . Exponential (Bayes
mercury alkalinity in .
largemouth bass R estimators)
: - concentration in water sample
Kamalja and from Florida the sampled fish RSS,
Koshti (Size: 52) P CTB Exponential LRSS,
(2022) ERSS

Koshti and Gross income data G . . G . . Bivariate L RSS,
Kamalja at UC I'OSSZIE’)I(IZ((;me m I'OSS21(1’)1(())(5)1’1’1€ m 1\(/131.;1?11: ti(;rlrllax LRSS,
(2021 b) (Size: 77) " MRSS

In most of the above situations the researchers assumed a suitable bivariate distribution to the real-

life bivariate data and estimated the parameter of interest using suitable RSS scheme. These studies are

more focused on estimation under RSS schemes. In a very few cases statistical goodness of fit tests are
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used to validate the hypothetical bivariate distribution. The reason for this is, checking the validity of
specific distributional assumption for univariate data is quite easy with the help of existing statistical
software but to validate the fit of bivariate distribution, limited statistical software with only a few

multivariate distributions are available.

To deal with bivariate data, it seems more realistic to guess a suitable marginal distribution to each
variable and validate it statistically. Once the confirmation of validity of specified distribution for each of
the univariate data is done, the significance of correlation between the two variables will set up the
assumption of the corresponding bivariate distribution. We motivated to follow this procedure to deal

with a real-life bivariate data for RSS estimation instead of mere assumption of the bivariate distribution.

We consider a real-life situation described by Philip et al. (2002) where RSS scheme is suitable to
apply in bivariate set up. We fit some possible suitable distributions to both the study and auxiliary
variables marginally and choose the one with the best goodness of fit measure. The correlation between
the two variates builds the assumption about the corresponding bivariate distribution to the data and the

appropriate RSS scheme for parameter estimation can then be used.

3. DEALING WITH RVP DATA

Philip et al. (2002) considered one motivational application of RSS from the Environmental
Protection Agency (EPA) of the US to evaluate gasoline quality which is measured by the Reid Vapor
Pressure. Unburned hydrocarbons emitted from automobile tailpipes produce ground level ozone and
smog. But the recent advancements in automobile technology, many of the hydrocarbons evaporate off
the manifold. One way to reduce this evaporated emission is to control the use of gasoline and vehicle.
This can be achieved by reducing volatility of the gasoline which is measured by the RVP value. In US it

is recommended to use reformulated gas which has certain limiting RVP value.

An EPA inspector occasionally visits gas pump in a city, takes sample of gasoline and measures
RVP at the field which produces cheap and quick measurement. Once in a while, the inspector after
measuring RVP at the field will ship a gasoline sample to the laboratory for a measurement likely with

higher precision at a higher cost. Thus, the pair of measurement is collected at field and laboratory. Here
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laboratory measurements (Y) of RVP are much more expensive than measurement at field (X) because
of special packing to be used to ship a gasoline sample from a field to a laboratory. Cheap field
measurements of RVP are correlated with laboratory measurements. A cost-effective sampling method is
extremely desirable in this situation as discussed by Nussbaum and Sinha (1997). Philip et al. (2002)
efficiently estimated the mean RVP in gasoline consumed by the public under the assumption that (X, Y)
follow bivariate normal distribution. For some other references related with this study see, Chen et al.

(2003) and Wolfe (2012).

We consider a data used by Chen et al. (2003) for which 90 field (X) and laboratory (V)
measurements are given. Chen et al. (2003) generated a sample of size 15 using both SRS and RSS
method for estimation of mean laboratory measurement Y without any assumption about the distribution
of (X,Y). Chen et al. (2003) used the 90 X-values from Table 3 of Nussbaum and Sinha (1997) and
generated 90 corresponding Y -values using fitted simple linear regression model. This data and its

descriptive statistics are shown in Table 3 and Table 4 respectively.

Table 3 The (Field, lab) measurements values

X Y No. | X Y No. | X Y
7.27 | 7.42043 | 31 | 7.47 | 7.40194 | 61 | 7.35 | 7.30603
7.57 | 7.55349 | 32 | 7.54 | 7.47252 | 62 | 7.41 | 7.54441
747 | 749534 | 33 | 7.54 1 7.49941 | 63 | 7.28 | 7.17364
7.27 | 7.15787 | 34 | 7.45|7.43206 | 64 | 7.41 | 7.37344
7.51 ] 7.70336 | 35 | 6.42 | 6.48164 | 65 | 7.37 | 7.37414
8.03 | 7.97076 | 36 | 8.21 | 8.09954 | 66 | 7.63 | 7.54699
7.37 | 7.40452 | 37 | 8.69 | 8.80488 | 67 | 7.37 | 7.40092
7.16 | 7.13687 | 38 | 8.64 | 8.61522 | 68 | 7.45 | 7.29943
832 | 8.26775 | 39 | 7.86 | 7.95413 | 69 | 7.47 | 7.53020
8.30 | 8.30437 | 40 | 8.22 | 8.20800 | 70 | 7.37 | 7.43612
7.51 | 7.43280 | 41 | 7.35|7.21393 | 71 | 7.32 | 7.33868
7.01 | 6.96980 | 42 | 7.37 | 7.14588 | 72 | 7.30 | 7.31769
7.52 | 7.57230 | 43 | 7.41 | 7.36116 | 73 | 7.22 | 7.10908
6.53 | 6.43238 | 44 | 7.45|7.49847 | 74 | 7.47 | 7.41043
7.01 | 6.92487 | 45 | 7.44 | 7.46515 | 75 | 7.54 | 7.58248
7.54 | 7.45800 | 46 | 8.34 |8.29940 | 76 | 7.31 | 7.36234
7.31 | 7.32792 | 47 | 8.56 | 8.64405 | 77 | 7.25 | 7.36149
7.59 | 7.55373 | 48 | 7.32 | 7.22311 | 78 | 7.37 | 7.26742
7.37 | 7.23511 | 49 | 7.35|7.45366 | 79 | 7.32 | 7.23074
7.47 | 7.49863 | 50 | 7.50 | 7.35767 | 80 | 7.28 | 7.33903
7.56 | 7.66931 | 51 | 7.47]7.49101 | 81 | 7.38 | 7.49330

[N NS [y [y Sy U S R [y e
'—Oooo\loxm.l;w[\),—OGOO\lO\m-bwl\)»—ag
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No. | X Y No. | X Y No. | X Y
22 | 7.34 | 7.456940 | 52 | 7.37 | 7.35279 | 82 | 7.22 | 7.11519
23 | 7.56 | 7.51281 | 53 | 7.43 | 7.30706 | 83 | 7.76 | 7.69649
24 | 7.45| 7.58576 | 54 | 7.41 | 7.41159 | 84 | 7.45 | 7.42787
25 | 7.60 | 7.49504 | 55 | 7.37 | 7.2815 | 85 | 7.51 | 7.56681
26 | 7.63 | 7.53542 | 56 | 7.31 | 7.28819 | 86 | 7.47 | 7.54080
27 | 7.16 | 7.23144 | 57 | 7.59 | 7.50309 | 87 | 7.38 | 7.33081
28 | 7.54 | 7.56595 | 58 | 7.47|7.52883 | 88 | 7.79 | 7.77385
29 | 7.51 | 7.49295 | 59 | 7.43 | 7.42279 | 89 | 7.38 | 7.46263
30 | 7.52 | 7.62099 | 60 | 7.40 | 7.56357 | 90 | 7.14 | 7.03363
~ Source: Chen et al. (2003)
Table 4 Descriptive statistics of RVP of gasoline data
Variable | Minimum | @4 | Median | Mean | @3 | Maximum | SD Pxy
X 6.420 735 7.445 | 7.493 | 7.540 8.690 0.3594 0.9760
Y 6.432 732 | 7.445 | 7.484 | 7.552 8.805 03736 |

We fit lognormal, gamma, normal, Weibull, exponential and logistic distribution to both the
variables X and Y. The goodness of fit statistics for respective fits which include, Kolmogorov-Smirnov
(K-S) statistic, Cramer-von Mises (C-M) statistic, Anderson-Darling (A-D) statistic along with the
analytical measures Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) are
reported in Table 5. The lower values of all these statistics and analytical measures are desirable for

confirming one distribution among all the candidate distributions.
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Table 5 Goodness of fit statistics and analytical measures of the competing distributions for the RVP

data
Variable | Distribution Goodness of fit with Goodness of fit criterion
K-S statistic | C-M statistic | A-D statistic AIC BIC

Logistic 0.1449 0.5721 4.1478 52.0516 57.0512

Log Normal 0.2160 1.1734 6.3291 70.3452 75.3448

¥ Gamma 0.2195 1.2059 6.4883 71.5140 76.5136
Normal 0.2265 1.2757 6.8288 74.2233 79.2229

Weibull 0.2758 2.0393 10.3618 111.9971 116.9967
Exponential 0.5854 8.3533 38.191 544.5091 547.0089
Logistic 0.1460 0.3716 2.7188 62.1091 67.1087

Log Normal 0.2141 0.8254 4.5066 77.3904 82.3900
Gamma 0.2177 0.8544 4.6512 78.5229 83.5225

Y Normal 0.2249 0.9174 4.9658 81.1799 86.1795
Weibull 0.2710 1.6851 8.7192 118.193 123.193
Exponential 0.5814 8.2976 37.9537 544.286 546.786

From Table 5, Logistic distribution seems to be the best one among all the other distributions. The MLEs

of parameters of Logistic distribution are reported in Table 6 along with their standard errors.

For further confirmation, we plot the empirical CDF of Logistic distribution using ‘fitdist’ function

in ‘fitdistrplus’ (Delignette-Muller and Dutang (2014)) package in R for both variables X and Y. These

Table 6 Logistic distribution fit summary for X and Y

are presented in Figure 1.

Variable i o SE(n) | SE(o)
X 7.4518 | 0.1619 | 0.0279 | 0.0154
Y 7.4485 | 0.1742 | 0.0303 | 0.0163
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Empirical and theoretical CDFS of X Empirical and theoretical CDFS of Y

Estimated CDF
Estimated CDF

——  Logistic ——  Logistic

00 02 04 06 08 1.0

o0 02 04 068 08 10

65 70 75 8.0 8.5 6.5 70 75 8.0 85

Figure 1: Empirical CDF of Logistic distribution for X and Y

All the above results support the Logistic fit to be the most suitable among all other considered
competitor  distributions for both X and Y. Thus X~Logistic(7.4518,0.1619) and
Y~Logistic(7.4485,0.1742). The correlated random variables motivate us to assume MTBL
distribution to RVP data. We briefly review the estimators of parameters for MTBL distribution under
RSS schemes proposed by Chacko and Thomas (2009) and Lesitha et al. (2010) in the next section.

4. REVIEW OF RSS ESTIMATION FOR MTBL DISTRIBUTION

We briefly review results on COS for MTBL distribution. Let (X, Y) have MTBL distribution with
parameters (Uq, Uy, 01,0,, @), denoted as MTBL(uq, Uy, 04,05, @) . The pdf of MTBL(uq, Uy, 01,02, @)
distribution given by Kotz et al. (2000) is,

exp(-H1 exp(-2=£2 —exp(-X=H#1 _e (¥zH2
Fooy) =0 iy 1+a<1 i )><1 = )> ;

(o) (v () e (2520

X, Y, U1, Uy € R, 01,07 > 0,0_’ € [_1,1]

The marginal distribution of Y is Logistic with parameters u,, g, with pdf
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exp(-2=E2
f) = =)

oy (1+exp(—y;gz))2 ’

v, Uy ER,O'Z > 0.

where u, is location parameter and o, is scale parameter.

Chacko and Thomas (2009) and Lesitha et al. (2010) studied the COS for MTBL distribution and
proposed RSS estimators of u, and g, using the results of COS. Let Y}, be the concomitants of rt" order
statistic corresponding to " order statistic X ()r in the rt" ordered sample X WrX@r o Xmym T =

1,2,..n. The mean and variance of Y[, are as follows.
E(Y[r]r) = Uz + 02, Var(Y[r]r) = 6,07

where &, =

a(n-2r+1) _ m? a2 (n—2r+1)2
m+1) > 7 3 n+1

o Estimation under usual RSS scheme

Let Y[171, Y[212s -+» Yjn)n b€ RSS sample of size n from MTBL distribution. The RSS estimators of i,
and o, and their variances based on the RSS sample are under the assumption that the association
parameter @ from MTBL(uq, U,, 04,0,, @) distribution is known. To review the estimators given by

Chacko and Thomas (2009) consider the following notations.

Yip =M1 Y22 Yinn]' is a column vector of ranked set sample,

§=( & - &,

1=(1,1,..,1) is a column vector of size n with all entries 1,
G = diag(d;, 8y, ..., 8,) is an X n diagonal matrix,

A= (§671)(1'6711) - (§6711)%,

[.] is the greatest integer function and

T = (Y[r]r - Y[n—r+1]m)a r=12,..,n
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The unbiased estimators fI; gss, 62 rss and BLUES [i; p;yg and 65 g yg of p, and o, based on

RSS sample given by Chacko and Thomas (2009) are summarized in the following.

Scheme Estimator Var (Estimator)
. 1 . 2 (n?  a? —2r+1\2
fz,rss =~ Xr=1Yirir Var(fiz,rss) = %2 (% - % r=1 (n n+r1 ) )
RSS L o? [E] m? n—2r+1\2
~ 1 5 =— %  ylal (Z _ 2 (=27
O2,Rss = TZLZL T Var(8y pss) 2oy Xroy ( 3 ¢ ( n+1 ) )
P 2<Zr=1 sr)
Az,BLUE = N _ o2(§671y)
RSS A—l(f'a—l(fl' _ lf')G_l)Y[n] Var(.“Z,BLUE) - A
BLUE | & = v
AT (167118 - §1)67 )Yy : A

Chacko and Thomas (2009) obtained moment estimator of & based on sample correlation coefficient p as

follows.
. A 3
J—l ifps——
~ _ ) pm? 3 A 3
CNT I mshsm
. A 3
\ 1 ifp =

e Estimation under ERSS scheme

Lesitha et al. (2010) reported that the maximum information about the parameters yu, and g, is

available in concomitants of extreme order statistics for MTBL distribution. This information is utilized
to obtain estimator of y, and o, under ERSS scheme. In this scheme Lesitha et al. (2010) considered E]

independent sets of samples each with n units and measure Y -variable associated with the lower and
upper extremes with respect to X in each sample. They use such a generated sample to obtain estimators

of u, and a,.

For the sake of application of ERSS scheme, we consider the usual ERSS scheme proposed by

Samawi et al. (1996) to estimate parameters. It consists of generating n random samples each of n units

from the population. The even-size sample under ERSS scheme is (Y[l]er[n]Z: e Y[l]n—l:Y[n]n) and is
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denoted by ERSS;. While an odd-size ERSS sample is (1/[1]1,Y[n]2,Y[1]3 ...,Y[n]n_l,Y[n_H]n> and is
2

denoted by ERSS,. The BLUEs of u, and o, their variances using ERSS; and ERSS, samples are as

follows.
1 =AYEG (&1 Vc-1 . _a3(§6¢71)
fiagrss = AT (E'671(E1 = 18)G Y)Yy, Var(fiygrss) = T
5 -1(1'6- ' - ~ F(1'6711
O26rss = A 1(1 G 1(15 —$1 )G 1)Y[n]: Var(6,prss) = a A —).

Here respective Y[, § and G are to be used as specified below for even and odd sample sizes, that is, for

ERSS; and ERSS, samples.

(Y10, Yingz - Yitin-1, Yinin] ~ if meven

Yin = e Y b
[Y[l]l Y[n]Z nTHn] lfnodd

& & - &) ifneven
$= ! 9
(& & 7 ‘2) ifnodd

diag(84,6y, ..., 0,) if neven

G= .
diag (61, On ...,5n_+1> if nodd
2

5. ESTIMATION OF PARAMETERS FOR RVP DATA UNDER RSS SCHEMES

In this section we estimate RVP measurement of the gasoline at laboratory using RSS and ERSS
schemes. From the bivariate RVP data (X;,Y;),i = 1,2,...,90, RSS sample of size 8 is generated using
‘RSSampling’ (Sevinc et al. (2019)) package in R. To choose ERSS sample we use the same 8 X 8 array
of 8 random samples each of size 8 as given by the package for RSS sample selection. The RSS and

ERSS samples selected are presented in Table 7.
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Table 7 The RSS and ERSS samples for laboratory measurement of RVP

Scheme Sample values for Y- variable
RSS | 7.0336 | 7.1091 | 7.4537 | 7.4228 | 7.6210 | 7.6693 | 7.9708 | 7.6965
ERSS; | 7.0336 | 7.5825 | 7.2314 | 8.2678 | 7.3279 | 8.2678 | 6.4324 | 7.6965

As the estimation under RSS and ERSS schemes are under the assumption that the association
parameter « is known, we need to estimate . We estimate a using correlation between the bivariate data
as given by Chen et al. (2003). The pyy = 0.9760 leads to an estimate of @ as @ = 1 as given by Chacko
and Thomas (2009). We use @ = 1 in RSS and ERSS estimators and their variances as reported in Section
4. Table 8 shows the estimates of y, and o, under RSS and ERSS; schemes along with their variances

assuming (X, Y)~MTBL(uy, i3, 01,07, 1) distribution.

Table 8 Estimates of y, and o, under RSS and ERSS schemes

Estimator | Estimate V(ﬁz,smeme) Estimator | Estimate V(az,Scheme)
Scheme —_— —_—
of Uz of U 0'% of () of () a'%
RSS Az rss 7.4971 0.3788 G2 Rrss 0.5452 1.9178
A2 BLUE 7.4918 0.3766 02 BLUE 0.5195 1.3603
ERSS; A2, ERSs 7.4800 0.3356 02 ERss 0.6090 0.5548

The results reported in Table 8 conclude that as expected, an estimator of y, and o, based on ERSS
scheme has least variance as compared to RSS scheme. It is observed that estimator of population mean

under ERSS scheme is close to the true value.

6. CONCLUSIONS

In this paper we summarize various real-life bivariate data sets and simulation studies where the
estimation of parameters is done under different RSS schemes. We consider the situation where RVP
measurement at laboratory is much more expensive than measurement at field but highly correlated with
laboratory measurement. This situation encourages to use RSS scheme for sample selection as it gives
more efficient estimator than the usual SRS scheme. We consider the sample observations on the two

variables as given by Chen et al. (2003) and fit various distributions to each variable marginally and
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arrive at conclusion that logistic distribution is the most suitable among all other competitor distributions.

Logistic marginals with correlation support to assume MTBL distribution to the bivariate data under

study. Further we briefly review the estimation of location and scale parameter of MTBL distribution

under RSS and ERSS schemes. Finally, we establish that, among the usual RSS and ERSS scheme,

estimate of RVP of gasoline under ERSS scheme is better than RSS assuming the MTBL distribution to

the data.
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