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Abstract 

This paper introduces a new family of continuous probability distributions called 

the Marshall-Olkin Kumaraswamy-G Poisson family of distribution. Some of its 

mathematical properties including explicit expressions for the order statistics, 

probability weighted moments, moments generating function, mean deviation and 

Rényi entropy are derived. The estimation of the model parameters is performed by 

the maximum likelihood method. The flexibility of the proposed family is illustrated 

by means of one real life application to failure time data set. 
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1. INTRODUCTION 

Generating new distributions starting with a base line distribution by adding one 

or more additional parameters through various mechanisms is an area of research in 
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the field of the probability distribution which have seen lot of work of late. The basic 

motivation of this paper is to bring in more flexibility in the modelling failure type of 

data generated from real life situation. Extension of existing well-known distributions 

to enhance flexibility in modelling variety of data has attracted attention of researchers 

recently. Some of the notable new family of distributions proposed of late includes 

among others the Poisson-G family (Abouelmagd et al., 2017), Marshall-Olkin 

Kumaraswamy-G family (Handique et al., 2017), beta Kumaraswamy-G family 

(Handique et al., 2017), beta generated Kumaraswamy Marshall-Olkin-G family 

(Handique and Chakraborty, 2017),  generalized Burr XII family (Handique and 

Chakraborty, 2018), exponentiated generalized-G Poisson family (Gokarna and 

Haitham, 2018), beta-G Poisson family (Gokarna et al., 2019), exponentiated 

generalized Marshall-Olkin family (Handique et al., 2019), zero truncated Poisson 

family (Abouelmagd et al., 2019), Generalized Modified exponential-G family 

(Handique et al., 2020),   Poisson Transmuted-G family (Handique et al., 2021),  beta 

generalized Marshall-Olkin-G family (Handique et al., 2021),  Odd Half-Cauchy 

family (Chakraborty et al., 2021),  McDonald Lindley-Poisson family (Percontini et 

al., 2021), Kumaraswamy Poisson-G family (Chakraborty et al., 2022), Beta Poisson-

G family (Handique et al., 2022), generalized odd linear exponential family (Farrukh 

et al., 2022) and complementary geometric-Topp-Leone-G family (Handique et al., 

2023) among others. 

 Here briefly introduce the Marshall Olkin-G (MO-G) family (Marshall and Olkin, 

1997), Kumaraswamy-G (Kw-G) (Cordeiro and de Castro, 2011) family and Marshall 

Olkin Kumaraswamy-G (Handique et al., 2017) family of distributions.  

1.1 Marshall-Olkin-G (MO-G) family of distributions 

Starting with a given baseline distribution with probability density function 

(pdf) ( )g x and cumulative distribution function (cdf) ( )G x Marshall and Olkin (1997) 
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introduced a new family of distributions with sf 
MOG ( ; )F x   by introducing an extra 

parameter .0  The survival function (sf)  
MOG( ; )F x   of the MOG( )  family of 

distributions is defined by  

                                
MOG ( ; )F x 

( )

1 ( )

G x

G x







 

where, , 0x    and   1 . Now the cdf and pdf of the 

MOG( ) family of distributions is given by 

                        
MOG ( ; )F x 

( )

1 ( )

G x

G x



   and  

MOG ( ; )f x   
2

( )

[1 ( )]

g x

G x







 .                                    

where ( )g x   and ( )G x is the pdf and cdf of the baseline distribution. If 1 , then 

MOG ( ; ) ( )F x G x  .  

 

1.2 Kumaraswamy-G (Kw-G) family of distributions 

For a baseline cdf ( )G x  with pdf ( )g x , Cordeiro and de Castro (2011) defined 

KwG( , )a b  distribution with sf, cdf and pdf are 

                      
KwG ( ; , ) [1 ( ) ]a bF x a b G x  , 

KwG ( ; , ) 1 [1 ( ) ]a bF x a b G x                          

and                       
KwG 1 1( ; , ) ( ) ( ) [1 ( ) ]a a bf x a b ab g x G x G x   .                       

where  0, ( ) ( )x g x G x   and 0,0  ba  are additional shape parameters besides 

those of the baseline distribution which influence the skewness and tail weights.  

 

1.3 Marshall-Olkin Kumaraswamy-G (MOKw-G) family of distributions   

Handique et al. (2017) proposed a new extension of the MOG( )  family by 

considering the cdf and pdf of KwG( , )a b distribution in the MOG( )  formulation 
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and call it MOKw G( , , )a b distribution with pdf is given by  

               

1 1
MOKwG

2

( ) ( ) [1 ( ) ]
( ; , , )

[1 {1 ( ) } ]

a a b

a b

ab g x G x G x
f x a b

G x






 


 
                        (1)  

                                                                          ,0 , 0, 0, 0x a b                                                                                                                        

By using equation (1) the corresponding cdf, sf and hrf of MOKw G( , , ,)a b are 

respectively obtained as     

                    
MOKwG 1 [1 ( ) ]

( ; , , )
1 [1 ( ) ]

a b

a b

G x
F x a b

G x




 


 
                                           (2)                                      

                     
MOKwG ( ; , , )F x a b

[1 ( ) ]

1 [1 ( ) ]

a b

a b

G x

G x








 
                                          (3)                                                    

                 
MOKwG ( ; , , )h x a b

1 1( ) ( ) [1 ( ) ]

1 [1 ( ) ]

a a

a b

ab g x G x G x

G x

 


 
                             (4)  

The pdf in equation (1) for 1 , reduces to that of KwG( , )a b  and for 1 ba , 

reduces to that of MOG( ) . 

2. THE PROPOSED MODEL 

 Suppose that the failure time of each subsystem follows the MOKwG( , , )a b  

distribution above. Let iY denote the failure time of the 
thi  subsystem and X denote 

the time to failure of the first out of the N functioning subsystems that 

is },...,,min{ 21 nYYYX  . Then the conditional cdf of X given N is 

( ; , , / ) 1 Pr ( / ) 1 ( ) N
iF x a b N X x N P Y x      

MOKwG1 [1 ( ; , , )] NG x a b  
 

So, the unconditional cdf of X (for 0x ) can be expressed as 

       

MOKwG

1

1 1 [1 ( ; , , )]
( ; , , , )

( 1) !

n n
MOKw GP

n

G x a b
F x a b

e n

 
 






 




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MOKwG1 exp[ ( ; , , ) ]
(5)

1

G x a b

e 

 


 



 

Note here that if we take },...,,max{ 21 nYYYX 
 
and proceed as above the new cdf 

happens to be   

 
                    

MOKwGexp[ ( ; , , ) ] 1
( ; , , , )

1

MOKw GP G x a b
F x a b

e 

 
  




                             (6) 

It is easy to combine (5) and (6), as a new family of distributions with cdf 

             

MOKwG1 exp[ ( ; , , ) ]
( ; , , , ) ,

1

MOKw GP G x a b
F x a b

e 

 
 



 



}0{R    

(7)
        

Above refer to the distribution in equation (7) as the Marshall-Olkin 

Kumaraswamy-G Poisson family (“MOKw-GP” in short) of distribution. The 

corresponding pdf and hrf of MOKw-GP( , , , )a b  family is given by 

 

1 MOKwG MOKwG( ; , , , ) (1 ) ( ; , , )exp[ ( ; , , ) ]MOKw GPf x a b e g x a b G x a b            (8) 

and           
MOKwG MOKwG

MOKwG

( ; , , ) exp[ ( ; , , ) ]
( ; , , , )

exp[ ( ; , , ) ]

MOKw GP g x a b G x a b
h x a b

G x a b e 

   
 

 








 
     

                                                                          ,      }0{R ;  x    

The main advantage of the proposed family of distribution appears to be its 

enhanced flexibility. Moreover distributions from this extended family is expected 

show significant improvement in data adjustment when compared to it sub models and 

other existing ones with respect to various model selection criteria, test of goodness-

of-fits.  
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In the present work concentrate on the Marshall-Olkin Kumaraswamy 

exponential Poisson (MOKw-EP) distribution a particular distribution of the proposed 

family which is derived by considering ( ) xg x e   and ( ) 1 ,xG x e   0x , 0   

in MOKw -EP( , , , , )a b   . The pdf, cdf and sf respectively of the derived 

distribution are respectively given as
 

   

1 1
1

2

(1 ) [1 (1 ) ]
( ; , , , , ) (1 )

[1 {1 (1 ) } ]

x x a x a b
MOKw EP

x a b

ab e e e
f x a b e

e

  




 
   



    
  



  
 

  
                                                     

                                         

1 [1 (1 ) ]
exp

1 [1 (1 ) ]

x a b

x a b

e

e












   
  

     

1 1 [1 (1 ) ]
( ; , , , , ) (1 ) 1 exp

1 [1 (1 ) ]

x a b
MOKw EP

x a b

e
F x a b e

e





   




  



    
     

      

and 

1 1 [1 (1 ) ]
( ; , , , , ) 1 1 exp

1 1 [1 (1 ) ]

x a b
MOKw EP

x a b

e
F x a b

e e



 
   






 

    
     

       

Now the plots of the pdf of the MOKw -EP( , , , , )a b   for some selected values of 

parameters to in Figure 1 to check the shapes assumed the distribution   
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Figure 1: Density plots of the MOKw -EP( , , , , )a b   distribution 

From the plots of the pdf of the MOKw -EP( , , , , )a b    in Figure 1 for different 

parameter values it can be seen that the distribution is very flexible and can offer 

different types of shapes of density right skewed, left skewed, high/ low peak and 

symmetric as well. 

The rest of the article is outlined as follows. In Section 3, derive a very useful 

representation for the MOKw-GP density and distribution function also obtain some 

general mathematical properties of the proposed family including order statistics, 

probability weighted moments, moment generating function, mean deviation and 

Rényi entropy. Maximum likelihood estimation of the model parameters is 

investigated in Section 4. In Section 5, one application to failure time data set to 

illustrate the potentiality of some special models of the proposed family. Finally, 

concluding remarks are presented in Section 6. 

3. EXPANSIONS OF THE PDF AND CDF  

Here express (7) and (8) as infinite series expansion to show that the 

MOKw-GP( , , , )a b  can be written as a linear combination of 
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MOKw-G( , , )a b distributions. These expressions will be helpful to study the 

mathematical and statistical characteristics of the MOKw-GP( , , , )a b  family. 

Using the power series for the exponential function, in equation (8) as 

      

MOKwGP MOKwG MOKwG

0

( ; , , , ) ( ; , , ) [ ( ; , , )]i

i

i

f x a b g x a b G x a b    




             (9)                                      

                                         

MOKwG 1

0

[ ( ; , , ]i

i

i

d
G x a b

dx
 






                                   (10)                                            

                 

 

where                         
!)1()1(

)1( 1

iie

ii

i












 and )1(  iii   

Using Taylor series expansion cdf of (7) as 

                    MOKwGP MOKwG

0

( ; , , , ) [ ( ; , , )] j

j

j

F x a b G x a b   




                                 (11)                                     

where              
!)1(

)1( 1

je

jj

j 











    

 

3.1 Distribution of Order Statistics   

Consider a random sample 
nXXX ...,,, 21

 from any 

MOKw-GP( , , , )a b  distribution. Let :r nX  denote the thr  order statistic. The pdf of 

:r nX  can be expressed as 

MOKw-GP MOKw-GP 1 MOKw-GP

:

!
( ) ( ; , , , ) ( ; , , , ) {1 ( ; , , , )}

( 1)!( )!

r n r

r n

n
f x f x a b F x a b F x a b

r n r
       

 

      MOKw-GP MOKw-GP 1

0

!
( 1) ( ; , , , ){ ( ; , , , )}

( 1)!( )!

n r
m m r

m

n rn
f x a b F x a b

mr n r
   


 



 
   

   
  
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The pdf of the thr  order statistic for of the MOKw-GP( , , , )a b  can be derived by 

using the expansion of the pdf and cdf as  

: ( )r nf x MOKwG MOKwG

0 0

!
( 1) [ ( ; , , )] ( ; , , )

( 1)!( )!

n r
m i

i

m i

n rn
G x a b g x a b

mr n r
  

 

 

 
   

   
   

                         MOKwG 1

0

[ [ ( ; , , ] ]j m r

j

j

G x a b 


 



  , where i  and j  are defined above. 

Using power series raised to power for positive integer )1(n , 



















0

,

0 i

i

in

n

i

i

i ucua , where the coefficient inc , for ,...2,1i  are easily obtained 

from the recurrence equation 
minm

i

m

in cainmaic 



   ,

1

1

0, ])1([)(  where n

on ac 0,
. 

 Now                      

1

MOKwG MOKwG

1,

0 0

[ ( ; , , ] [ ( ; , , )]

m r

j j

j m r j

j j

G x a b d G x a b  

 

 

 

 

 
 

 
   

Therefore the density function of the thr  order statistics of 

MOKw-GP( , , , )a b  distribution can be expressed as 

: ( )r nf x

MOKwG MOKwG

1,

0 0 0

!
( 1) [ ( ; , , )] ( ; , , )

( 1)!( )!

n r
m i j

i m r j

m i j

n rn
d G x a b g x a b

mr n r
  

  


 

  

 
   

   
   

           MOKwG MOKwG

, 0

[ ( ; , , )] ( ; , , )i j

i j

i j

G x a b g x a b  






                                         (12) 

         MOKwG 1

, 0

[ ( ; , , )]
( 1)

i j i j

i j

d
G x a b

i j dx





 




 

  

where   
1,

0

!
( 1)

( 1)!( )!

n r
m

i j i m r j

m

n rn
d

mr n r
 



 



 
   

   
  
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3.2 Probability Weighted Moments 

The probability weighted moments (PWM), first proposed by Greenwood et al. 

(1979), are expectations of certain functions of a random variable whose mean exists. 

The ( , , )thp q r  PWM of T is defined by dxxfxFxFx rqp

rqp )()](1[)(,,  




. 

From equation (9) the 
ths  moment of T  can be written as  

                         MOKwGP( ) ( ; , , , )s sE X x f x a b dx 




   

                                   MOKwG MOKwG

0

[ ( ; , , )] ( ; , , )s i

i

i

x G x a b g x a b dx  


 

   

                                   
0,,

0

is

i

i 




  

where rqp ,, MOKwG MOKwG MOKwG[ ( ; , , )] {1 ( ; , , )} ( ; , , )p q rx F x a b F x a b f x a b dx  




   is 

the PWM of MOKwG( , , )a b distribution.    Therefore the moments of the 

MOKwGP( , , , )a b   may be expressed in terms of the PWMs of MOKwG( , , )a b . 

Proceeding similarly can express ths  moment of the thr  order statistic :r nX in 

a random sample of size n from MOKwGP( , , , )a b  on using equation (12) as 

;( )s

r nE X 
, , 0

, 0

i j s i j

i j








 , where i j  defined in above. 

3.3 Moment Generating Function  

The moment generating function of MOKw-GP( , , , )a b  family can be easily 

expressed in terms of those of the exponentiated MOKwG( , , )a b  distribution using 

the results of Section 3. For example using equation (10) it can be seen that  
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MOKwGP( ) [ ] ( ; , , , )sX sx

XM s E e e f x a b dx 




  
MOKwG 1

0

[ ( ; , , ]sx i

i

i

d
e G x a b dx

dx
 

 




   

          MOKwG 1

0

[ ( ; , , )]sx i

i

i

d
e G x a b dx

dx
 




 

    
0

( )i X

i

M s




  

where )(sM X
is the mgf of a exponentiated MOKwG( , , )a b  distribution. 

 

3.4 Mean Deviation   

 

Let X be the MOKwGP( , , , )a b   random variable with mean )(XE and 

median )5.0()(Median QXM  . The mean deviation from the mean 

)]()([   XEX and the mean deviation from the median 

)]()([ MXEXM  can be expressed as 






 dxxfXX )()(  









 dxxfxdxxfx )()()()( )(2)(2   F  

and                






 dxxfMXXM )()( 





M

M

dxxfMxdxxfxM )()()()( )(2 M   

respectively, where )(F is the cdf of the MOKwGP( , , , )a b  distribution, and 






t

dxxfxt )()(  where )(t  as follows:  

MOKwG MOKwG

0

( ) [ ( ; , , )] ( ; , , )

t

i

i

i

t x G x a b g x a b dx  


 

   , where i  defined in 

Section 3. 
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3.5 Rényi entropy    

The Rényi entropy is defined by













 





 dxxfIR

 )(log)1()( 1  , where 0  

and 1 . Using power series exponential function in equation (9) can write as 

       

MOKwGP MOKwG MOKwG

0

( ; , , , ) ( ; , , ) [ ( ; , , )]i

m

m

f x a b g x a b G x a b      




 
 

1 MOKwG MOKwG

00

Thus ( ) (1 ) log ( ; , , ) [ ( ; , , )]i

R m

m

I g x a b G x a b dx     
 





 
   

 
  

                     1 MOKwG MOKwG

0 0

(1 ) log ( ; , , ) [ ( ; , , )]i

m

m

g x a b G x a b dx    






 
   

 
 

 

where 
!)1(

)1( )1(

me

im

m 











  

4. MAXIMUM LIKELIHOOD ESTIMATION METHOD:  

This section is devoted to the estimation of the MOKwGP( , , , )a b  model 

parameters via the maximum likelihood (ML) method.  

Let ),...,,( 21 nxxxx  be a random sample of size n  from MOKwGP( , , , )a b  with 

parameter vector ( , , , , )a b  ρ , where ),...,,( 21 qξ is the parameter vector 

of G. The log-likelihood function is written as 

  
1 1

( ) log( ) log (1 ) log[ ( , ) ] ( 1) log[ ( , ) ]
n n

i i

i i

n ab n e g x a G x  

 

       ρ ξ ξ  

1

( 1) log[1 ( , ) ]
n

a

i

i

b G x


   ξ
1

2 ([1 {1 ( , ) } ]
n

a b

i

i

G x


   ξ
1

1 [1 ( ; ) ]

1 [1 ( ; ) ]

a bn

a b
i

G x

G x




  
  

  


ξ

ξ
 

This log-likelihood function can not be solved analytically because of its complex 

form but it can be maximized numerically by employing global optimization methods 



         ASR Vol. 35 (1), Dibrugarh University                           March, 2023 

24 

available with the software’s R.  By taking the partial derivatives of the log-likelihood 

function with respect to , , anda b   obtain the components of the score vector 

( , , , , )a bU U U U U U  ρ
. 

The asymptotic variance-covariance matrix of the MLEs of parameters can 

obtained by inverting the Fisher information matrix )(I ρ  which can be derived using 

the second partial derivatives of the log-likelihood function with respect to each 

parameter. The thji elements of )(I ρn  are given by  

,])([I 2

jiji lE   ρ , 1, 2,3,4i j q  . 

The exact evaluation of the above expectations may be cumbersome. In practice one 

can estimate )(I ρn  
by the observed Fisher’s information matrix )Î()ˆ(Î jin ρ  defined 

as      

  ,)(Î
ˆ

2

ηη
ρ


 jiji l  , 1, 2,3,4i j q  . 

Using the general theory of MLEs under some regularity conditions on the parameters 

as n  the asymptotic distribution of )ˆ( ρρn  is ),0( nk VN  

where )(I)( 1
ρ

 njjn vV . The asymptotic behaviour remains valid if nV  is replaced by 

)ˆ(Îˆ 1
ρ

nV . Using this result large sample standard errors of j
th
 parameter 

j  is 

given by
jjv̂ . 

5. REAL LIFE APPLICATION FOR FAILURE TIME DATA 

Here consider fitting of one failure time data set to show that the distributions 

from the proposed  MOKw-EP distribution can provide better model than the 

corresponding distributions exponential (Exp), moment exponential (ME), Marshall-

Olkin exponential (MO-E) (Marshall and Olkin, 1997), generalized Marshall-Olkin 
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exponential (GMO-E) (Jayakumar and Mathew, 2008), Kumaraswamy exponential 

(Kw-E) (Cordeiro and de Castro, 2011),  Beta exponential (BE) (Eugene et al., 2002), 

Marshall-Olkin Kumaraswamy exponential (MOKw-E) (Handique et al., 2017), 

Kumaraswamy Marshall-Olkin exponential (KwMO-E) (Alizadeh et al., 2015) and 

Kumaraswamy Poisson exponential (KwP-E) (Chakraborty et al., 2022) distribution. 

Also considered some well-known model selection criteria namely the AIC, BIC, 

CAIC and HQIC and the Kolmogorov-Smirnov (K-S) statistics, Anderson-Darling (A) 

and Cramer von-mises (W) for goodness of fit to compare the fitted models also 

provided the asymptotic standard errors and confidence intervals of the mles of the 

parameters for each competing model. Visual comparison fitted density and the fitted 

cdf are presented in Figure 3. These plots reveal that the proposed distributions 

provide a good fit to this data. Here considered one failure time data set of 72 guinea 

pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). 

 TTT, Box plot and Descriptive Statistics for the failure time data: 

The total time on test (TTT) plot (see Aarset, 1987) is a technique to extract the 

information about the shape of the hazard function. A straight diagonal line indicates 

constant hazard for the data set, where as a convex (concave) shape implies decreasing 

(increasing) hazard. The TTT plots for the data sets Fig. 2 indicate that the data set 

have increasing hazard rate also provide the box plot of the data to summerise the 

minimum, first quartile, median, third quartile, and maximum where a box is shown 

from the first quartile to the third quartile with a vertical line going through the box at 

the median. 
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Figure: 2 TTT and Box plot for the failure time data set 

 Table 1: Descriptive Statistics for the failure time data set 

Data Set   n      Min.    Mean    Median     s.d.    Skewness    Kurtosis    1
st
 Qu.   3

rd
 Qu.    Max. 

      I        72    0.100    1.851     1.560     1.200     1.788          4.157        1.080     2.303     7.000 

 

Table 2: MLEs, standard errors, confidence intervals (in parentheses) values for the 

failure time data set 

    Models                  ̂                                                â                         b̂                     ̂                  

     Exp                       ---                        ---                       ---                        ---                  0.540 

    ( )                                                                                                                                (0.063) 

                                                                                                                                     (0.42, 0.66)  

     ME                        ---                       ---                       ---                        ---                  0.925 

    ( )                                                                                                                                (0.077) 

                                                                                                                                     (0.62, 1.08)     

   MO-E                      ---                      8.778                  ---                         ---                 1.379                  

   ( , )                                               (3.555)                                                                 (0.193)                                                         

                                                        (1.81,15.74)                                                         (1.00,1.75)      

   GMO-E                  0.179                 47.635                 ---                         ---                 4.465                    

 ( , , )                   (0.070)               (44.901)                                                               (1.327)                

                               (0.04, 0.32)        (0, 135.64)                                                         (1.86. 7.07)                 

    Kw-E                       ---                       ---                   3.304                    1.100              1.037                   

  ( , , )a b                                                                      (1.106)                 (0.764)            (0.614)                                                          

                                                                                   (1.13,5.47)             (0, 2.59)          (0, 2.24) 
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     B-E                       ---                         ---                    0.807                   3.461               1.331                    

 ( , , )a b   
                                                                      (0.696)                (1.003)            (0.855)                 

                                                                                      (0, 2.17)            (1.49,5.42)        (0, 3.01)             

  MOKw-E                   ---                     0.008                2.716                    1.986               0.099                    

( , , , )a b                                            (0.002)             (1.316)                 (0.784)            (0.048)                                                          

                                                          (0.004,0.01)     (0.14, 5.29)          (0.449, 3.52)      (0, 0.19)   

  KwMO-E                   ---                      0.373                3.478                  3.306                0.299                    

( , , , )a b                                            (0.136)             (0.861)               (0.779)              (1.112)                                                          

                                                          (0.11, 0.64)       (1.79, 5.17)       (1.78, 4.83)          (0, 2.48)  

    KwP-E                  4.001                      ---                   3.265                   2.658               0.177                    

 ( , , , )a b               (5.670)                                           (0.991)               (1.984)             (0.226)                             

                               (0, 15.11)                                     (1.32, 5.21)          (0, 6.55)            (0, 0.62) 

   MOKw-EP              1.155                    1.465                2.038                  1.687              0.114                    

 ( , , , , )a b            (0.241)                 (0.361)             (0.162)                (0.112)           (0.033)                             

                               (0.68, 1.62)         (0.75, 2.17)        (1.72, 2.35)       (1.46, 1.91)   (0.04, 0.17) 

 

Table 3: Log-likelihood, AIC, BIC, CAIC, HQIC, A, W and KS (p-value) values for 

failure time data set 

            Models                
           

AIC         BIC         CAIC       HQIC         A        W        KS           

                                                                                                                                         (p-value)    

             Exp ( )                        234.63     236.91     234.68     235.54       6.53    1.25      0.27 

                                                                                                                                           (0.06) 

             ME ( )                        210.40     212.68     210.45      211.30      1.52    0.25      0.14 

                
              

                                                                                                             (0.13) 

             MO-E ( , )                 210.36     214.92    210.53      212.16      1.18    0.17       0.10         

                                                                                                                                            (0.43)       

             GMO-E ( , , )            210.54     217.38    210.89      213.24      1.02    0.16       0.09         

                                                                                                                                            (0.51)      

              Kw-E ( , , )a b              209.42     216.24    209.77      212.12       0.74    0.11       0.08        

                                                                                                                                            (0.50)      

             B-E ( , , )a b                 207.38     214.22    207.73      210.08       0.98    0.15       0.11           
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                                                                                                                                            (0.34) 

             MOKw-E ( , , , )a b    209.44     218.56    210.04      213.04       0.79    0.12       0.10          

                                                                                                                                            (0.44)     

             KwMO-E ( , , , )a b    207.82      216.94   208.42      211.42       0.61    0.11       0.08          

                                                                                                                                            (0.73)  

             KwP-E ( , , , )a b         206.63      215.74   207.23      210.26       0.48    0.07        0.09          

                                                                                                                                             (0.79)  

         MOKw-EP ( , , , , )a b   202.42     213.77   203.32       206.92      0.45    0.04        0.07          

                                                                                                                                             (0.83)  

 

The MLE’s of the parameters with corresponding standard errors in the 

parentheses for all the fitted models along are given in Table 2 for the data set. While 

the various model selection criteria namely the AIC, BIC, CAIC, HQIC, A, W and KS 

statistic with a p-value for the fitted models of the data sets are presented in Table 3. 

From these findings based on the lowest values different criteria the MOKw-EP is 

found to be a better model than the models Exp, ME, MO-E, GMO-E, Kw-E, B-E, 

MOKw-E, KwMO-E and Kw-PE for the data set. A visual comparison of the 

closeness of the fitted density with the observed histogram and fitted cdf with the 

observed ogive for the data sets I are presented in the Figure 3 also indicate that the 

proposed distributions provide comparatively closer fit to this data set. 
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Figure 3: Plots for the epdf and ecdf of the MOKw-EP model for failure time data set 

 

6. CONCLUSION 

A new extension of Marshall-Olkin Kumaraswamy generalized family of 

distributions introduced which includes some well-known distribution and some of its 

important mathematical and statistical properties are studied. The maximum likelihood 

method for estimating the parameters are also discussed. Comparative data modelling 

application of the proposed model with some of its sub-models and other recently 

introduced models is carried out considering one failure time data set reveal its 

superiority. 
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